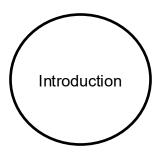
Labadain: The Foundation of Tetun Language Technology

Gabriel de Jesus, PhD

Affiliated Researcher with INESC TEC Founder and Director of Timor News (LIX) Creator of Labadain

FEST-UNTL


November 20, 2025 FEST Auditorium Room Hera, Dili, Timor-Leste

Outline

- What is Language Technology?
- Who is the Language Tech. for?
- Why Tetun?
- The Role of Tetun

Labadain in Language Technology

- Overview
- Labadain Main Components
- Labadain Component Details
 Academia Impact

- Research and Innovation
- Social Impact

Challenges, Opportunities, and Future **Directions**

- Challenges and Open Issues
- Opportunities
- **Future Directions**

Introduction

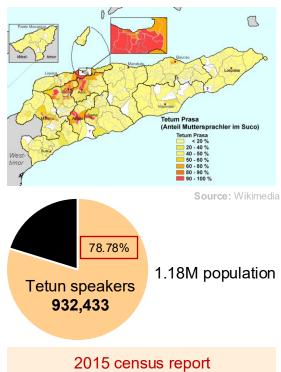
What is Language Technology?

Human language technology refers to systems that understand, process, search, and interact with human language.

Research Areas:

- Natural language processing
- Computational Linguistics
- Speech Technologies
- Information Retrieval and Search
- ,

Who is the Language Technology for?


A truly inclusive digital transformation must speak the language of its people.

Why Tetun?

The most spoken language in Timor-Leste

One of the country's official languages

Instituto Nacional de Estatística Timor-Leste, Timor-Leste population and housing census 2015: population distribution by administrative area - volume 2 (language). URL https://inetl-ip.gov.tl/2023/03/09/census-2015-priority-table-population-by-language/

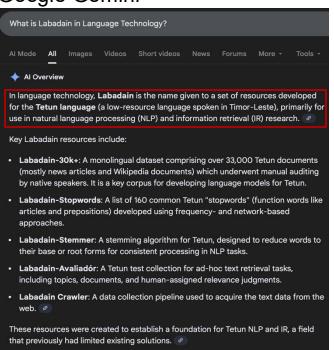
The Role of Tetun

Empowers cultural identity and local innovation

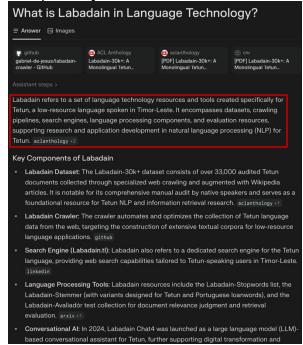
National language of inclusion

Bridge government and citizens

Voice of cultural identity


Foundation for AI and innovation

Key to digital sovereignty


Labadain in Language Technology

Overview

Google Gemini

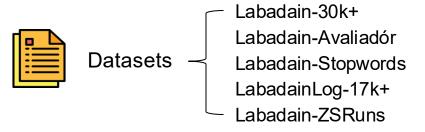
Perplexity Al

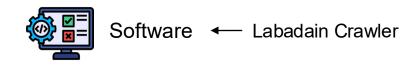
Labadain Main Components

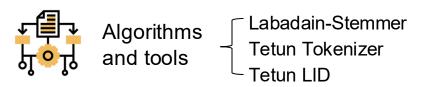
Labadain is a set of language-technology resources and tools created for **Tetun**.

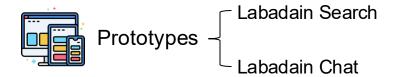
Datasets

Software




Algorithms and tools




Prototypes

Labadain Component Details

10

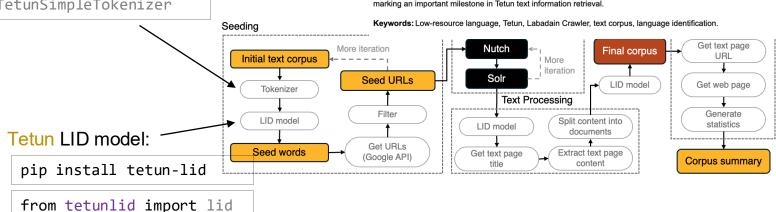
Research, Innovation, and Impact

"Labadain isn't just a product – it represents the effort to advance research and innovation in Tetun language Technology"

pip install tetun-tokenizer

Tetun tokenizer:

from tetuntokenizer.tokenizer
import TetunSimpleTokenizer


Data Collection Pipeline for Low-Resource Languages: A Case Study on Constructing a Tetun Text Corpus

Gabriel de Jesus, Sérgio Nunes

INESC TEC and Faculty of Engineering of the University of Porto (FEUP)
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
gabriel.jesus@inesctec.pt, sergio.nunes@fe.up.pt

Abstract

This paper proposes Labadain Crawler, a data collection pipeline tailored to automate and optimize the process of constructing textual corpora from the web, with a specific target to low-resource languages. The system is built on top of Nutch, an open-source web crawler and data extraction framework, and incorporates language processing components such as a tokenizer and a language identification model. The pipeline efficacy is demonstrated through successful testing with Tetun, one of Timor-Leste's official languages, resulting in the construction of a high-quality Tetun text corpus comprising 321.7k sentences extracted from over 22k web pages. The contributions of this paper include the development of a Tetun tokenizer, a Tetun language identification model, and a Tetun text corpus, marking an important milestone in Tetun text information retrieval.

Paper: https://aclanthology.org/2024.lrec-main.390/

Source code: https://github.com/gabriel-de-jesus/labadain-crawler

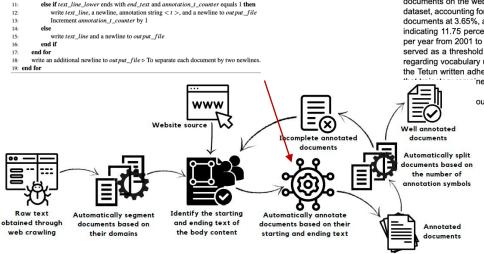
Labadain-30k+: A Monolingual Tetun Document-Level Audited Dataset

Research and Innovation

> The "annotated documents" file in Figure 4.3.

annotation t counter $\leftarrow 0$ > To control the occurrence of < t > to a maximum of two.

write annotation string $\langle t \rangle$, a newline, text_line, and a newline to out put_file


get text_line_lower by lowercasing text_line and removing extra spaces if text_line_lower starts with start_text and annotation_t_counter equals 0 then

Gabriel de Jesus, Sérgio Nunes INESC TEC and Faculty of Engineering of the University of Porto (FEUP) Rua Dr. Roberto Frias, 4200-465 Porto, Portugal gabriel.jesus@inesctec.pt, sergio.nunes@fe.up.pt

Abstract

This paper introduces Labadain-30k+, a monolingual dataset comprising 33.6k documents in Tetun, a low-resource language spoken in Timort-Leste. The dataset was acquired through web crawling and augmented with Wikipedia documents released by Wikimedia. Both sets of documents underwent thorough manual audits at the document level by native Tetun speakers, resulting in the construction of a Tetun text dataset well-suited for a variety of natural language processing and information retrieval tasks. This dataset was employed to conduct a comprehensive content analysis aimed at providing a nuanced understanding of document composition and the evolution of Tetun documents on the web. The analysis revealed that news articles constitute the predominant documents within the dataset, accounting for 89.87% of the total, followed by Wikipedia documents at 4.34%, and legal and governmental documents at 3.65%, among others. Notably, there was a substantial increase in the number of documents in 2020, indicating 11.75 percentage points rise in document quantity, compared to an average of 4.76 percentage points per year from 2001 to 2023. Moreover, the year 2017, marked by the increased popularity of online news in Tetun, served as a threshold for analyzing the evolution of document writing on the web pre- and post-2017, specifically regarding vocabulary usage. Surprisingly, this analysis showed a significant increase of 6.12 percentage points in the Tetun written adhering to the Tetun official standard. Additionally, the persistence of Portuguese loanwords in med evident, reflecting an increase of 5.09 percentage points.

ource language, Tetun, Text dataset, Corpus content analysis.

Labadain-30k+ dataset summary

Total documents in the dataset	33,550
Total paragraphs in the content	334,875
Total sentences in the content	414,370
Total tokens in the corpus	12,300,237
Vocabulary in the corpus	162,466

Paper: https://aclanthology.org/2024.sigul-1.22/

Dataset: https://doi.org/10.25747/ydwr-n696

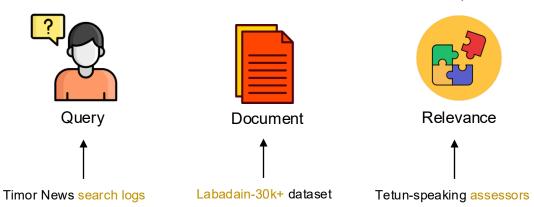
Algorithm 1 Content Annotation Algorithm.

Require: start_text, end_text, documents, out put_file

1: for all document in documents do

get title and url from document write title and url to output file

get body_content from document


for all text line in body content do

Increment annotation_t_counter by 1

Labadain-Avaliadór

A Tetun test collection for ad-hoc text retrieval

A test collection is a standardized dataset used to evaluate and compare retrieval effectiveness of search systems.

Paper: https://arxiv.org/abs/2412.11758

Retrieval, and Ranking

Establishing a Foundation for Tetun Ad-hoc Text Retrieval: Stemming, Indexing,

GABRIEL DE JESUS, Institute for Systems and Computer Engineering, Tech. and Science (INESC TEC), Portugal

Searching for information on the internet and digital platforms requires effective retrieval solutions. However, such solutions are not

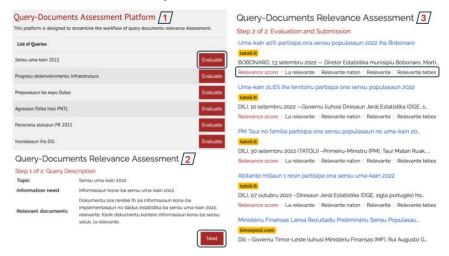
yet available for Tetun, making it difficult to find relevant documents for search queries in this language. To address this gap, we investigate Tetun text retrieval with a focus on the ad-hoc retrieval task. The study begins with the development of essential language resources—including a list of stopwords, a stemmer, and a test collection—that serve as a foundation for Tetun text retrieval. Various

strategies are evaluated using document titles and content. The results show that retrieving document titles, after removing hyphens and apostrophes but without applying stemming, improves performance compared to the baseline. Efficiency increases by 31.37%, while effectiveness achieves an average relative gains of +9.40% in MAP@10 and +30.35% in NDCG@10 with DFR BM25. Beyond the

top-10 cutoff point, Hiemstra LM demonstrates strong performance across multiple retrieval strategies and evaluation metrics. The contributions of this work include the development of Labadain-Stopwords (a list of 160 Tetun stopwords), Labadain-Stemmer (a Tetun stemmer with three variants), and Labadain-Avaliadór (a Tetun test collection comprising 59 topics, 33,550 documents, and 5,900 grels).

SÉRGIO NUNES, INESC TEC and Faculty of Engineering, University of Porto (FEUP), Portugal

These resources are publicly available to support future research in Tetun information retrieval.

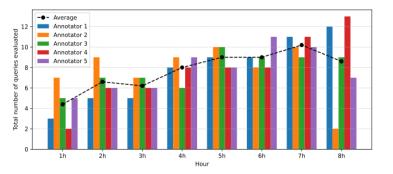

CCS Concepts: • Information Retrieval → Text Retrieval; • Low-Resource Languages → Tetun.

Additional Key Words and Phrases: Stopwords, Stemming, Test Collection, Ad-hoc Retrieval

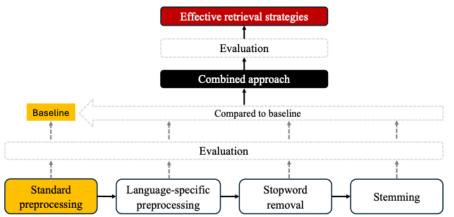
Labadain-Avaliadór

A Tetun test collection for ad-hoc text retrieval

Web interface used by human assessors


Paper: https://arxiv.org/abs/2412.11758

Establishing a Foundation for Tetun Ad-hoc Text Retrieval: Stemming, Indexing, Retrieval, and Ranking


GABRIEL DE JESUS, Institute for Systems and Computer Engineering, Tech. and Science (INESC TEC), Portugal SÉRGIO NUNES, INESC TEC and Faculty of Engineering, University of Porto (FEUP), Portugal

Searching for information on the internet and digital platforms requires effective retrieval solutions. However, such solutions are not vet available for Tetun, making it difficult to find relevant documents for search queries in this language. To address this gap, we investigate Tetun text retrieval with a focus on the ad-hoc retrieval task. The study begins with the development of essential language resources—including a list of stopwords, a stemmer, and a test collection—that serve as a foundation for Tetun text retrieval. Various

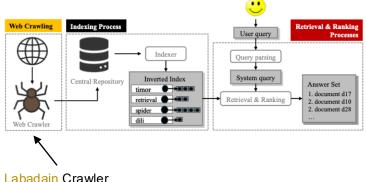
Total of queries evaluated by each annotator per hour

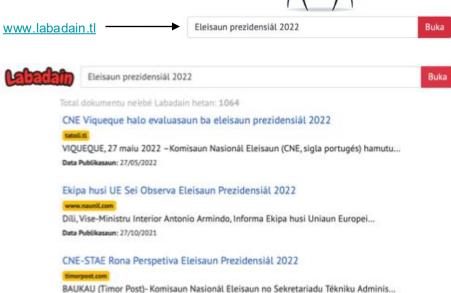
Description	Valu
Total number of topics	59
Total number of qrels	5,900
Minimum number of relevant documents per query*	1
Maximum number of relevant documents per query	99
Average number of relevant documents per query	36.70
The standard deviation of relevant documents per query	20.89

Establishing a Foundation for Tetun Ad-hoc Text Retrieval: Stemming, Indexing, Retrieval, and Ranking

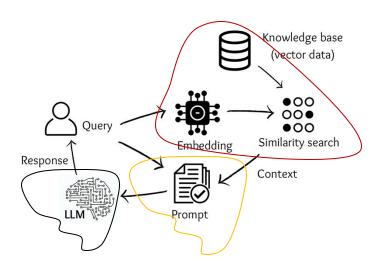
GABRIEL DE JESUS, Institute for Systems and Computer Engineering, Tech. and Science (INESC TEC), Portugal SÉRGIO NUNES, INESC TEC and Faculty of Engineering, University of Porto (FEUP), Portugal

Searching for information on the internet and digital platforms requires effective retrieval solutions. However, such solutions are not yet available for Tetun, making it difficult to find relevant documents for search queries in this language. To address this gap, we investigate Tetun text retrieval with a focus on the ad-hoc retrieval task. The study begins with the development of essential language resources—including a list of stopwords, a stemmer, and a test collection—that serve as a foundation for Tetun text retrieval. Various strategies are evaluated using document titles and content. The results show that retrieving document titles, after removing hyphens and apostrophes but without applying stemming, improves performance compared to the baseline. Efficiency increases by 31.37%, while effectiveness achieves an average relative gains of +9.40% in MAP@10 and +30.35% in NDCG@10 with DFR BM25. Beyond the top-10 cutoff point, Hiemstra LM demonstrates strong performance across multiple retrieval strategies and evaluation metrics. The contributions of this work include the development of Labadain-Stopwords (a list of 160 Tetun stopwords), Labadain-Stemmer (a Tetun


Retrieval Strategies	Model		ision at C			AP at Cute			CG at Cut		MAP	NDCG
Ketrievai Strategies	Model	@5	@10	@20	@5	@10	@20	@5	@10	@20	WIAT	NDCG
	BM25	0.8169	0.7763	0.6602	0.1444	0.2568	0.3903	0.6801	0.6668	0.6454	0.5925	0.7408
	DFR BM25	0.8169	0.7763	0.6619	0.1440	0.2563	0.3901	0.6811	0.6666	0.6468	0.5926	0.7407
Baseline	TF-IDF	0.8136	0.7746	0.6458	0.1432	0.2546	0.3825	0.6739	0.6640	0.6380	0.5802	0.7364
	Dirichlet LM	0.7898	0.7525	0.6398	0.1299	0.2361	0.3671	0.6359	0.6356	0.6174	0.5780	0.7208
	Hiemstra LM	0.8136	0.7695	0.6669	0.1428	0.2521	0.3928	0.6670	0.6588	0.6465	0.6090	0.7435
	BM25	0.8237	0.7763	0.6644	0.1453	0.2572	0.3930	0.6866	0.6685	0.6499	0.5938	0.7419
	DFR BM25	0.8237	0.7763	0.6661	0.1450	0.2568	0.3929	0.6878	0.6684	0.6515	0.5942	0.7420
Remove apostrophes	TF-IDF	0.8203	0.7746	0.6500	0.1443	0.2552	0.3854	0.6808	0.6660	0.6428	0.5818	0.7377
	Dirichlet LM	0.7898	0.7542	0.6432	0.1301	0.2365	0.3686	0.6380	0.6376	0.6206	0.5794	0.7219
	Hiemstra LM	0.8169	0.7712	0.6712	0.1429	0.2529	0.3953	0.6725	0.6609	0.6507	0.6102	0.7443
	BM25	0.8271	0.7881	0.6856	0.1459	0.2616	0.4069	0.7143	0.7014	0.6871	0.6498	0.8130
	DFR BM25	0.8271	0.7881	0.6856	0.1459	0.2616	0.4070	0.7138	0.7016	0.6873	0.6506	0.8135
Remove hyphens	TF-IDF	0.8271	0.7814	0.6805	0.1457	0.2573	0.4028	0.7118	0.6979	0.6845	0.6402	0.8077
	Dirichlet LM	0.7898	0.7576	0.6797	0.1322	0.2420	0.3860	0.6578	0.6615	0.6652	0.6679	0.8039
	Hiemstra LM	0.8339	0.7881	0.6898	0.1472	0.2635	0.4143	0.7142	0.6980	0.6914	0.6841	0.8239
	BM25	0.8102	0.7729	0.6695	0.1438	0.2547	0.3976	0.6693	0.6600	0.6488	0.6030	0.7443
	DFR BM25	0.8102	0.7729	0.6712	0.1439	0.2549	0.3984	0.6695	0.6602	0.6503	0.6049	0.7451
Remove stopwords	TF-IDF	0.8102	0.7729	0.6686	0.1439	0.2549	0.3975	0.6691	0.6600	0.6484	0.6018	0.7438
	Dirichlet LM	0.8034	0.7593	0.6653	0.1317	0.2379	0.3803	0.6329	0.6315	0.6299	0.5936	0.7255
	Hiemstra LM	0.8203	0.7678	0.6864	0.1437	0.2521	0.4036	0.6702	0.6587	0.6577	0.6189	0.7483
	BM25	0.8881	0.8373	0.7153	0.1553	0.2796	0.4304	0.7500	0.7347	0.7133	0.6648	0.8213
Remove apos-	DFR BM25	0.8881	0.8390	0.7169	0.1553	0.2804	0.4313	0.7512	0.7356	0.7149	0.6664	0.8219
trophes and	TF-IDF	0.8780	0.8322	0.7119	0.1543	0.2759	0.4273	0.7401	0.7288	0.7086	0.6553	0.8149
hyphens	Dirichlet LM	0.8407	0.8034	0.7068	0.1390	0.2561	0.4099	0.6834	0.6920	0.6829	0.6713	0.8018
	Hiemstra LM	0.8780	0.8305	0.7263	0.1524	0.2743	0.4339	0.7379	0.7245	0.7147	0.6955	0.8282
	BM25	0.8814	0.8237	0.7237	0.1576	0.2720	0.4356	0.7394	0.7221	0.7130	0.6752	0.8220
Remove hy-	DFR BM25	0.8847	0.8254	0.7237	0.1585	0.2729	0.4366	0.7416	0.7228	0.7139	0.6764	0.8224

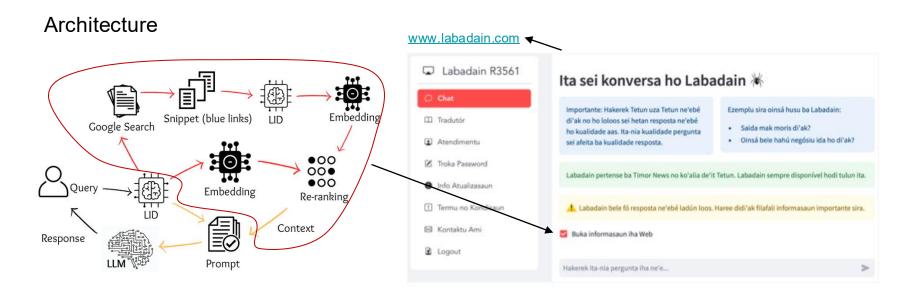

Paper: https://arxiv.org/abs/2412.11758

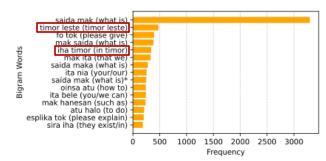
Labadain Search

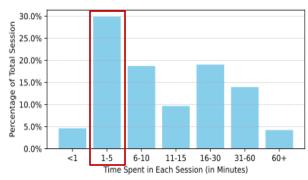


Labadain Chat (RAG Prototype)

RAG is an architecture that combines information retrieval (IR) with generative large language models (LLMs) to produce more accurate and up-to-date responses.


R - Retrieval	Find relevant documents
A - Augmented	Add it to the prompt context
G - Generation	Produce better responses


General Architecture of RAG


19

Labadain Chat (RAG Prototype)

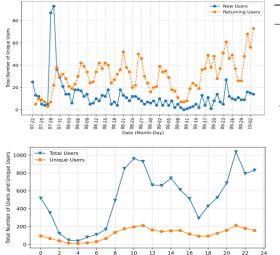
Social Impact

Paper: https://dl.acm.org/doi/abs/10.1145/3731120.3744596

Dataset: https://doi.org/10.25747/X2DK-5Y06

Insights into LLM-Based Conversational Search: A Study of Tetun-Speaking Users' Search Behavior

Gabriel de Jesus INESC TEC / University of Porto Porto, Portugal gabriel.jesus@inesctec.pt Sérgio Nunes INESC TEC / University of Porto Porto, Portugal sergio.nunes@fe.up.pt


Abstract

Advancements in large language model (LLM)-based conversational assistants have transformed search experiences into more natural and context-aware dialogues that resemble human conversation. However, limited access to interaction log data hinders a deeper understanding of their real-world usage. To address this gap, we analyzed 16,952 prompt logs from 904 unique users of Labadain Chat, an LLM-based conversational assistant designed for Tetun speakers to uncover patterns in user search behavior, engagement, and intent. Our findings show that most users (29.87%) spent between one and five minutes per session, with an average of 34 unique daily users. The majority (93.97%) submitted multiple prompts per session, with an average session duration of 16.9 minutes. Most users (95.22%) were based in Timor-Leste, with education and science (28.75%)

1 Introduction

Conversational search refers to user-friendly dialogues between humans and machines, whether spoken or written, aimed at satisfying information needs [3, 4, 21, 29]. With the advent of LLM-based conversational assistants, such as OpenAl's ChatGPT, Google's Gemini, Anthropic's Claude, and similar Al tools, such dialogues have become more natural and context-aware, closely resembling human conversation. These systems' ability to process unstructured language, handle complex queries, and support multi-turn interactions has made search more seamless and intuitive

Furthermore, these developments demand a deeper understanding of user behavior, providing deeper insights into search behavior, engagement, and intent. These insights are crucial for refining LLM-based conversational systems to provide more personalized

Topic	L. Chat	L. Search	Timor News
Education/Science	28.75%	16.75%	11.25%
Health	28.00%	16.50%	12.25%
Social/Culture	13.75%	11.75%	3.25%
Research/Academia	6.75%	4.00%	3.75%
Politic/Government	2.50%	7.50%	6.00%
Job vacancy	0.00%	3.50%	7.25%
Economy/Finance	1.00%	6.75%	2.75%
Agriculture/Environment	6.50%	2.00%	1.75%
Law/Justice	0.75%	3.75%	1.75%
Language/Translation	2.00%	4.25%	1.50%
Computer science	3.75%	3.00%	1.25%
Personal	0.50%	2.50%	3.25%
Porn	0.00%	0.25%	2.00%
Sport	0.75%	1.00%	0.50%
Holiday/Travel	0.25%	0.50%	0.75%
Entertainment	0.00%	0.50%	0.75%
Other	4.75%	15.75%	40.00%

Academia Impact

Tetun Datasets

Labadain-Stopwords: A Curated List of 160 Tetun Stopwords

Labadain-Stopwords is a curated list of 160 Tetun stopwords, compiled from the Labadain-30k+ dataset and validated by native speakers. It is well-suited for various Tetun...

Labadain-30k+: A Monolingual Tetun Document-Level Audited Dataset

Labadain-30k+ is a monolingual Tetun dataset containing 33,550 documents spanning from June 2001 to September 2023, excluding the years 2004 and 2005, for which no documents are...

Labadain-Avaliadór: A Test Collection for Tetun Ad-hoc Text Retrieval

The Labadain-Avaliadór dataset is a test collection developed for the ad-hoc retrieval task. It comprises 59 topics, 33,550 documents, and 5,900 query-document relevance...

LabadainLog-17k+: Search Logs from Tetun-Speaking Users Across Chat, Web,...

1. Overview LabadainLog-17k+ is a dataset of interaction logs in Tetun, collected from three different platforms: Labadain Chat (16,952 prompts): An LLM-powered conversational...

Labadain-ZSRunS: Sparse and Zero-Shot Dense Retrieval Runs with...

1. Overview Labadain-ZSRunS is a dataset consisting of run files produced by classical sparse and zero-shot dense retrieval models, resulted from the experiments on Tetun ad-hoc...

Tools, algorithm, and software

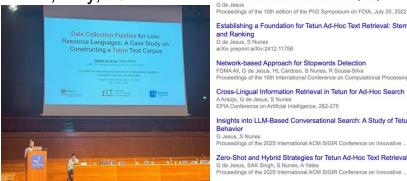
tetun-lid

Tetun Language Identification Model

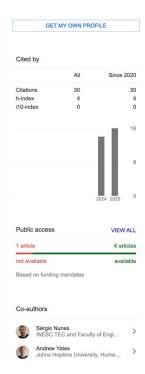
tetun-tokenizer


Tetun tokenizer

Academia Impact


Padova, Italy, 2025

Washington, USA, 2024



Turin, Italy, 2024

TITLE	CITED BY	YEAR
Labadain-30k+: A monolingual Tetun document-level audited dataset G de Jesus, S Nunes Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under	7	2024
Exploring Large Language Models for Relevance Judgments in Tetun G de Jesus, S Nunes Proceedings of the First Workshop on Large Language Models for Evaluation in	6	2024
Data collection pipeline for low-resource languages: A case study on constructing a tetun text corpus G de Jesus, SS Nunes	6	2024
Proceedings of the 2024 Joint International Conference on Computational Text Information Retrieval in Tetun G de Jesus European Conference on Information Retrieval, 429-435	6	202
Text Information Retrieval in Tetun: A Preliminary Study G de Jesus Proceedings of the 10th edition of the PhD Symposium on FDIA, July 20, 2022	3	2024
Establishing a Foundation for Tetun Ad-Hoc Text Retrieval: Stemming, Indexing, Retrieval, and Ranking G de Jesus, S Numes arXiv preprint arXiv:2412.11758	1	202
Network-based Approach for Stopwords Detection FDMAAli, G de Jesus, HL Cardoso, S Nunes, R Sousa-Silva Proceedings of the 16th International Conference on Computational Processing	1	202
Cross-Lingual Information Retrieval in Tetun for Ad-Hoc Search A Araûjo, G de Jesus, S Nunes EPIA Conference on Artificial Intelligence, 262-275		202
Insights into LLM-Based Conversational Search: A Study of Tetun-Speaking Users' Search Behavior G Jesus, S Nunes Proceedins of the 2025 International ACM SIGIR Conference on Innovative		202
Zero-Shot and Hybrid Strategies for Tetun Ad-Hoc Text Retrieval Get-Jesus, SAK Singh, S Nunes, A Yates		202

Challenges, Opportunities, and Future Directions

Challenges and Open Issues

Tetun text corpora remain limited.

Limited Al experts in Timor-Leste.

Few institutions focus on language technology research and development.

Insufficient funding for Tetun language innovation.

25

Opportunities

- 01 Advance research in Tetun NLP, IR, Generative AI, and related fields.
- Build partnerships with universities, industry, and local communities.

Ontribute to open Tetun datasets, resources, and Al tools.

Future Directions

Expand Tetun linguistic resources.

Expand techniques and tools for Tetun language processing.

Establish a dedicated AI R&D laboratory.

Encourage open collaboration and data sharing.

"Labadain is the foundation for inclusive digital future"

Thank You

Labadain: The Foundation of Tetun Language Technology

Gabriel de Jesus, PhD

Affiliated Researcher with INESC TEC Founder and Director of Timor News (LIX) Creator of Labadain

FEST-UNTL

November 20, 2025 FEST Auditorium Room Hera, Dili, Timor-Leste

